Volume 7, Issue 1 (2019)                   IQBQ 2019, 7(1): 21-27 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifi-Rad M. Differential Effects of Four Abiotic Factors on Seed Germination and Seedling Growth of Rangeland-Medical Plant, Wild Mustard (Sinapis arvensis L.). IQBQ. 2019; 7 (1) :21-27
URL: http://journals.modares.ac.ir/article-24-20800-en.html
Range & Watershed Management Department, Water & Soil Faculty, University of Zabol, Zabol, Iran , majid.sharifirad@gmail.com
Abstract:   (241 Views)
Aims: The aim of this study was to determine the effect of drought stress induced by using polyethylene glycol (PEG), heavy metals (Cd and Ni), and salinity (NaCl) on germination and seedling growth of Sinapis arvensis, an important medicinal plant in the Brassicaceae.
Materials & Methods: The Sinapis arvensis seeds treatments contained i), control ii), PEG (5%, 10%, 15%), iii) NaCl (50, 100, 150 mM), iv) Cd+2 (50, 100, 150μM), and v) Ni+2 (50, 100, 150μM). The experiment used a randomized complete block design with 4 replicates per treatment. The experiments were performed in a programmed incubator at 25±2oC. Seed germination was recorded every day for 16 days. The root and shoot lengths of seedlings were measured after 16 days of incubation. Then, the seedlings were dried and root and shoot dry weights were measured.
Findings: The results showed that germination percentage reduced with increasing concentrations of the tested factors. The maximum germination (97%) was observed in PEG (5%) and the minimum germination rate was recorded in NaCl (150 mM) with 41%. The maximum of root and shoot lengths were recorded in PEG (5%) and Ni (100μM) with 59 and 73 mm, respectively. Results showed that the maximum root and shoot fresh and dry weights were recorded at Ni (100μM) treatment.
Conclusion: Understanding plant responses to environmental stresses can help select suitable plants in order to obtain sustainable products. Overall, we can conclude that under aforementioned treatments, the root growth of S. arvensis was more affected than the shoot growth.
 
Full-Text [PDF 418 kb]   (92 Downloads)    

Received: 2018/05/13 | Accepted: 2018/07/26 | Published: 2019/01/20
* Corresponding Author Address: Range & Watershed Management Department, Water & Soil Faculty, University of Zabol, Sistan and Balouchestan, Iran

References
1. Bian F, Su J, Liu W, Li S. Dormancy release and germination of Taxus yunnanensis seeds during wet sand storage. Sci Rep. 2018;8:3205. [Link] [DOI:10.1038/s41598-018-21469-9]
2. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci. 2017;8:537. [Link] [DOI:10.3389/fpls.2017.00537]
3. Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313-24. [Link] [DOI:10.1016/j.cell.2016.08.029]
4. Wani SH, Kumar V, Shriram V, Sah SK. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4(3):162-76. [Link] [DOI:10.1016/j.cj.2016.01.010]
5. Haneklaus SH, Bloem E, Schnug E. Hungry plants - a short treatise on how to feed crops under stress. Agriculture. 2018;8(3):43. [Link] [DOI:10.3390/agriculture8030043]
6. Singhal P, Jan AT, Azam M, Haq QMR. Plant abiotic stress: A prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Front Life Sci. 2016;9(1):52-63. [Link] [DOI:10.1080/21553769.2015.1077478]
7. Majnoun Hosseini N, Siddique KHM, Palta JA, Berger J. Effect of soil moisture content on seedling emergence and early growth of some chickpea (Cicer arietinum L.) genotypes. J Agric Sci Technol. 2009;11:401-11. [Link]
8. Sharifi Rad MS, Sharifi Rad J. Effects of abiotic stress conditions on seed germination and seedling growth of medical plant, hyssop (Hyssopusofficinalis L.). Int J Agric Crop Sci. 2013;5(21):2593-7. [Link]
9. Humphries T, Chauhan BS, Florentine SK. Environmental factors effecting the germination and seedling emergence of two populations of an aggressive agricultural weed, Nassella trichotoma. PLoS One. 2018;13(7):e0199491. [Link] [DOI:10.1371/journal.pone.0199491]
10. Da Costa M, Huang B. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in responses to drought stress. J Am Soc Hortic Sci. 2007;132(3):319-26. [Link]
11. Saberali SF, Moradi M. Effect of salinity on germination and seedling growth of Trigonella foenum-graecum, Dracocephalum moldavica, Satureja hortensis and Anethum graveolens. J Saudi Soc Agric Sci. 2017 Sep. [Link]
12. Rahneshan Z, Nasibi F, Ahmadi Moghadam A. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact. 2018;13(1):73-82. [Link] [DOI:10.1080/17429145.2018.1424355]
13. Acosta-Motos JR, Ortu-o MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. Plant responses to salt stress: Adaptive mechanisms. Agronomy. 2017;7(1):18. [Link] [DOI:10.3390/agronomy7010018]
14. Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 2015;22(2):123-31. [Link] [DOI:10.1016/j.sjbs.2014.12.001]
15. Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants. 2014;6. pii: plu047. [Link] [DOI:10.1093/aobpla/plu047]
16. Bilgin O, Baser I, Korkut KZ, Balkan A, Saglam N. The impacts on seedling root growth of water and salinity stress in maize (Zea mays indentata Sturt.). Bulg J Agric Sci. 2008;14(3): 313-20. [Link]
17. Ghannadha MR, Omidi M, Abdolshahi R, Poustini K. A study of salt tolerance in genotypes of bread wheat using tissue culture and germination test. Iran J Agric Sci. 2005;36(1):75-85. [Persian] [Link]
18. BinaF, Bostani A. Effect of Salinity (NaCl) stress on germination and early seedling growth of three medicinal plant species. Adv Life Sci. 2017;4(3):77-83. [Link]
19. Agnihotri RK, Palni LMS, Pandey DK. Screening of landraces of rice under cultivation in Kumaun Himalayan for salinity stress during germination and early seedling growth. Indian J Plant Physiol. 2006;11(3):262-72. [Link]
20. Ghani A. Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iran J Toxicol. 2010;3(3):325-34. [Link]
21. Nazar R, Iqbal N, Masood A, Khan MIR, Syeed Sh, Khan NA. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci. 2012;3(10):1476-89. [Link] [DOI:10.4236/ajps.2012.310178]
22. Pishchik VN, Vorobyev NI, Chernyaeva II, Timofeeva SV, P Kozhemyakov A, Alexeev YV, et al. Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil. 2002;243(2):173-86. [Link] [DOI:10.1023/A:1019941525758]
23. Sachan P, Lal N. An overview of nickel (Ni2+) essentiality, toxicity and tolerance strategies in plants. Asian J Biol. 2017;2(4):1-15. [Link] [DOI:10.9734/AJOB/2017/33931]
24. Küpper H, Kroneck PMH. Nickel in the environment and its role in the metabolism of plants and cyanobacteria. In: Sigel A, Sigel H, Sigel RKO, editors. Metal ions in life sciences, nickel and its surprising impact in nature. 2nd Volume. Chichester: John Wiley & Sons; 2007. pp. 31-62. [Link] [DOI:10.1002/9780470028131.ch2]
25. Mulrooney SB, Hausinger RP. Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev. 2003;27(2-3):239-61. [Link] [DOI:10.1016/S0168-6445(03)00042-1]
26. Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P. Essentiality of nickel in plants: A role in plant stresses. Front Plant Sci. 2015;6:754. [Link] [DOI:10.3389/fpls.2015.00754]
27. Nieminen TM, Ukonmaanaho L, Rausch N, Shotyk W. Biogeochemistry of nickel and its release into the environment. In: Sigel A, Sigel H, Sigel RKO, editors. Metal ions in life sciences, nickel and its surprising impact in nature. 2nd Volume. Chichester: John Wiley & Sons; 2007. pp. 1-30. [Link] [DOI:10.1002/9780470028131.ch1]
28. Molas J. Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complexes. Environ Exp Bot. 2002;47(2):115-26. [Link] [DOI:10.1016/S0098-8472(01)00116-2]
29. Madhava Rao KV, Sresty TV. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 2000;157(1):113-28. [Link] [DOI:10.1016/S0168-9452(00)00273-9]
30. Gajewska E, Sklodowska M, Slaba M, Mazur J. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots Biologia Plantarum. 2006;50(4):653-9. [Link] [DOI:10.1007/s10535-006-0102-5]
31. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R. Soil salinity alters the morphology in Catharanthus roseus and its effects on endogenous mineral constituents. Eurasian J Biosci. 2008;2(1):18-25. [Link]
32. Jaleel CA, Gopi R, Manivannan P, Panneerselvam R. Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress. Turk J Bot. 2007;31(3):245-51. [Link]
33. Simpson MG. Plant systematics. 2nd Edition. Cambridge: Academic Press; 2010. [Link] [DOI:10.1016/B978-0-12-374380-0.50001-4]
34. Bendimerad N, Bendiab SAT, Breme K, Fernandez X. Essential oil composition of aerial parts of Sinapis arvensis L. from Algeria. J Essent Oil Res. 2007;19(3):206-8. [Link] [DOI:10.1080/10412905.2007.9699261]
35. Sharifi Rad J, Alfatemi MH, Sharifi Rad M, Sen DJ. Phytochemical and antimicrobial evaluation of the essential oils and antioxidant activity of aqueous extracts from flower and stem of Sinapis arvensis L.. Am J Adv Drug Deliv. 2013;1(1):001-010. [Link]
36. Al-Rubaye AF, Kadhim MJ, Hameed IH. Determination of bioactive chemical composition of methanolic leaves extract of Sinapis arvensis using GC-MS technique. Int J Toxicol Pharmacol Res. 2017;9(2):163-78. [Link] [DOI:10.25258/ijtpr.v9i02.9055]
37. ISTA. International Seed Testing Association. Proc Inter Seed Testing Assoc. 1966;31:1-152. [Link]
38. Faijunnahar M, Baque A, Ahsan Habib M, Tariq Hossain HMM. Polyethylene Glycol (PEG) induced changes in germination, seedling growth and water relation behavior of wheat (Triticum aestivum L.) genotypes. Univers J Plant Sci. 2017;5(4):49-57. [Link]
39. Vanangamudi K, Vanangamudi M, Venkatesh A, Vinaya Rai RS, Umarani R, Balaji S. Effect of osmotic priming on seed germination and vigour of neem (Azadirachta indica). J Trop For Sci. 2000;12(1):181-4. [Link]
40. Bittencourt MLC, Dias DCFS, Dias LAS, Araújo EF. Effects of priming on asparagus seed germination and vigor under water and temperature stress. Seed Sci Technol. 2004;32(2):607-16. [Link] [DOI:10.15258/sst.2004.32.2.29]
41. Andresen E, Küpper H. Cadmium toxicity in plants. Met Ions Life Sci. 2013;11:395-413. [Link] [DOI:10.1007/978-94-007-5179-8_13]
42. Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol. 2005;17(1):21-34. [Link] [DOI:10.1590/S1677-04202005000100003]
43. Aydinalp C, Marinova S. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulg J Agric Sci. 2009;15(4):347-50. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author